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ABSTRACT

For the exponential life distribution model and
any prior distribution for the failure rate
parameter, the predictive distribution has a de-
creasing failure rate. -We-give^a Bayesian ex-
planation of why this is logically reasonable.



A BAYESIAN EXPLANATION OF AN APPARENT FAILURE RATE PARADOX

by

Richard E. Barlow

For many devices, wear-out does not seem likely--at least not within

the time frame of interest. For such devices, an exponential life dis-

tribution model may be used; i.e., for random lifetime X

P[X > x X] = e- Xx

However, informatioin about A must come from data and/or engineering

judgment. In the exponential case and relative to X , the data can be

summarized by k , the observed number of failures and T , the observed

total time on test. Given (k,T) , suppose a posterior density is cal-

culated based on a prior w(X) . The predictive survival probability to

age x is then

P(x k,T) =f P[X > xI X]i(X k,T)dX . (1)

It is well known that for all priors, n , the predictive distribution has

a decreasing failure rate function in x (cf. Theorem 4.7, Page 103,

Barlow and Proschan (1981)] when it exists. However, at first glance, this

result seems highly unreasonable. If the device does not wear out, why

should we predict its future life by a model [the predictive distribution]

which actually has a decreasing failure rate?

Denote this predictive failure rate function by r(x I k,T) where,

using (1),
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r (x Ik, T) Df(2)

Figure 1 illustrates our apparent paradox.

Model
- Failure

Rate

4 Age x

FIGURE 1

COMPARISON OF PREDICTIVE FAILURE
RATE AND MODEL FAILURE RATE, X

A Bayesian explanation of Figure 1 may be instructive. Note that from (2),

r(O I k,T) - x~r(X I k,T)dX - E[X I k,T] (3)

so the posterior seen for X~ estimates r(O Ik,T) . Now suppose a new

d device (exchangeable with our sample devices) w,.ere to survive x hours,

then from (2)

Nib
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7.
ri I kTe-Xx I

e e- (X k,T)dXrf

0

But, by Bayes theorem

e- XxW( kT)

w(X I k,T,X > x) -O

fe-Xr(X k,T)dX

so that

r(x I k,T) - E[X I k,T,X > xJ
(4)

- Elk I k,T + x]

Hence our estimate for r(x I k,T) based on our updated informLion, namely

that another device has survived time x , produces an estimate for X

different from r(0 I k,T)

It is proved in Barlow and Proschan (1979) that for g nondecreasing,

f g(A)w(A k,T)dX is decreasing in T . Expression (3) is the special
0

case g(A) X so that E[X I k,T] > E[X I k,T + x] for all priors.

Example:

bala-le-b

If 7r(XI a,b) - r(a) , the natural conjugate prior, then

F(x I k,T) - b + T

and

g+,+.,+ ,+,. ++,,.. . . . :. .. ... ..
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;'7 a

r(x I k,T) b

which is obviously decreasing in x

Conclusion:

The source of the confusion concerns the difference between a model

based on prior assumptions, such as constant failure rate, and a predictive

distribution based on current information. We would not use the predic-

tive distribution (1) as our model, since we believe in constant failure

rate. However, were we asked to predict whether or not a new device

(exchangeable with the sample devices) would survive to age x , we would

use (1) based on current information.

On the other hand, were we to characterize a new set of say, m ,

devices, exchangeable with our sample, we would say that each has an ex-

ponential life distribution with expected failure rate E[IX I k,T] and

w(X I kT) would fully measure our uncertainty about that failure rate.

However, were we asked to predict how many will fail in time period [O,t]

we would use the predictive distribution and calculate

mE e- t I k,T] - F(t I k,T)

'[I ~ 1. . .. . " ' .. .. .
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